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Abstract
Purpose: Static wedge filters (WF) are commonly used in radiation therapy, forward and/or inverse planning. We calculated the
exact 2D/3D geometrical pathway of the photon-beam through the usual alloy WF, in order to get a better dose related to the
beam intensity attenuation factor(s), after the beam has passed through the WF. The objective was to provide general formula-
tion into the Anisotropic Analytical Algorithm (AAA) model coordinates system (depending on collimator/wedge angles) that
also can be applied to other models. Additionally, second purpose of this study was to develop integral formulation for 3D
wedge exponential factor with statistical approximations, with introduction for the limit angle/conformal wedge. Methods: The
radiotherapy model used to develop this mathematical task is the classical superposition-convolution algorithm, AAA (devel-
oped by Ulmer and Harder). We worked with optimal geometrical approximations to make the computational IMRT calcula-
tions quicker/reduce the planning-system time. Analytic geometry/computational-techniques to carry out simulations (for
standard wedges) are detailed/developed sharply. Integral developments/integral-statistical approximations are explained.
Beam-divergence limit Angle for optimal wedge filtration formulas is calculated/sketched, with geometrical approximations.
Fundamental trigonometry is used for this purpose. Results: Extent simulation tables for WF of 15º, 30º, 45º, and 60º are shown
with errors. As a result, it is possible to determine the best individual treatment dose distribution for each patient. We presented
these basic simulations/numerical examples for standard manufacturing WF of straight sloping surface, to check the accura-
cy/errors of the calculations. Simulations results give low RMS/Relative Error values (formulated) for WF of 15º, 30º, 45º, and
60º. Conclusion: We obtained a series of formulas of analytic geometry for WF that can be applied for any particular dose deliv-
ery model. Simulations results gave acceptable trigonometrical approximations/data that can be used for LINAC applica-
tions/planning-system software. The integral formulas presented are practical for dose delivery calculations/3D-approximations
when using WF/other similar types of beam modification devices. Limit angle formulation and conformal wedge concept was
also presented.

Keywords: Radiotherapy; Intensity Modulated Radiation Therapy; Static Alloy Wedges; Analytic Geometry; Treatment Planning
Optimization (TPO); Analytic Anisotropic Algorithm (AAA); Superposition-Convolution Models (SCM)

Introduction
Currently, radiotherapy treatment is based on two main ob-
jectives: (1) First, to deliver the optimal radiation at Planning
Target Volume(s) (PTVs), and (2) secondly, to minimize the
dose magnitude in the Organs at Risk (OARs), and sur-
rounding PTV tissues. Therefore, the radiation delivery
should conform the tumor shape with the most convenient
approximation(s).

There are a number of reasons to consider conformal and
optimized radiotherapy as the most important objective for
cancer treatment when radiation is included into the general
treatment planning of the disease. The optimal dose guaran-

Corresponding author: Francisco Casesnoves MSc (Physics) MD;
Computational Bioengineering Researcher, SIAM (Individual
Researcher), Denver, Colorado State, USA.
Email: mathematics8@gmx.com

Cite this article as:
Casesnoves F. Geometrical determinations of IMRT photon pen-
cil-beam path in radiotherapy wedges and limit divergence angle
with the Anisotropic Analytic Algorithm (AAA). Int J Cancer
Ther Oncol 2014; 2(3):02031. DOI: 10.14319/ijcto.0203.1

© Casesnoves ISSN 2330-4049

http://www.ijcto.org/index.php/IJCTO/index
http://dx.doi.org/10.14319/ijcto.0203.1


2 Casesnoves: Pencil-beam path in radiotherapy wedges International Journal of Cancer Therapy and Oncology
www.ijcto.org

tees a standard level of life quality, and maximum statistical
survival time for the patient. Survival time has recently been
determined, with clinical trials, when the tumor treatment is
a combination of methods (RT and Chemotherapy, usually).
This fact implies that when the optimal dose distribution is
reached, the most desirable pharmacological effect will ap-
pear in the PTV (direct) and OARs (inverse). The explanation
is that PTVs tumor cells will be killed or seriously damaged
by radiation prior to the drug's action, and just the inverse
process occurs at OARs regions (that is, the less radiation on
OARs, the better natural cell conditions to avoid/minimize
side-effects of drugs).

The patient quality of life also depends on minimum damage
within the OARs surrounding the tumor, otherwise basic
physiological functions could be altered and/or suppressed
(e.g., urethra wall destroyed in Prostate Cancer Radiation, or
Spinal Cord serious malfunction when surrounding metasta-
sis are radiated). The side-effects of radiation should be
minimized for the best TPO. The stages of dose delivery
should be set in such a way that the side-effects will be
minimum while radiation efficacy should be optimal. Finally,
the research for future TPOs depends on the application and
performance of the best TPOs available, in order to obtain
new research data to improve future radiation treatment, but
starting from the most advanced previous research stage.
Recently, new Radiation Therapy Advances adjutant to
Chemotherapy have reduced mortality, increased the quality
of life for the patient, decreased recurrences, metastasis, and,
in specific cases, increased survival time.1,2 However, this
assertion cannot be totally generalized because each cancer
type shows type specific characteristics.3 The clear and sta-
tistically demonstrated advance is related to increment of
quality of life and side-effects reduction, but not all the
studies/trials carried out show a sharp increment of survival
time and mortality reduction [refs]. In addition, Chemo-RT
has been proven to reduce mortality compared to only
Chemotherapy in important tumors in cancer epidemiology
(e.g., clearly in breast cancer from the 2nd-3rd year after the
tumor diagnosis-treatment, Figure 1).Medical technology
advances responsible of these improvements are principally
the significant increase of the radiation quality (provided by
the engineering and physical design of the newest accelera-
tors), and the development of new physical and computa-
tional radiation therapy methods.4 Among them, IMRT,
IMPT (we refer to the specific Bragg-Peak dose deposition for
protons which make it easier to conform to the tumor 3D
shape and to control the distributed dose compared to pho-
tons), and the new generations of planning systems. Recently
5, an Analytical Proton Beam Model for proton dose calcula-
tions has been developed. This model is based on optimiza-
tion of exponentials, a Gaussian term, and a power expansion
of an initial Proton Stopping-Power Formula. Variational

Optimization and Monte-Carlo GEANT4 computational
work is also used for model fitting. In addition, the new
planning systems implement several options of Inverse
Treatment Planning Optimization Algorithms by a group of
distinct formulas, according to the running time available for
the RT Planner. Computing power has experienced a signif-
icant growth in functional development in recent times 6, a
fact which has produced direct applications in RT specifically
and Medical Technology in general. In addition, Large-Scale
Computation and Software, High Performance Computing,
future Exascale software/hardware, and recent Mathematical
advances in computer science to provide different tools in a
short time for industry and research labs, play an important
role in these cutting-edge improvement stages. The particular
field of Mathematical Methods and Modeling which has been
developed in the last few decades, and the advances in Ap-
proximation Theory, are useful to simplify and create faster
and more precise software in RT. Complementing this, the
new mechanical engineering design of current RT apparatus
(Linear Accelerators, LINACs) has resulted in a better IMRT
beam/dose distribution (e.g. collimators, output windows,
internal filters, rotation mechanics of couch and gantry,
electronics, motors, gantry accessories, etc).

Nevertheless, apart from the principal mechanical and
physical tools and parts of the new accelerators, the
complementary use of Beam Modification Devices (BMDs)
constitute an effective and easy way to get conformal dosage,
without excessive technical effort, and waste of treatment
time. The inconvenient of the BMDs is the dose distribution
alteration, due mainly to the increment of scattering photons
(more frequent in Kilovoltage than Megavoltage). BMD types
are classified by Shielding, Compensation, Wedge Filtration
and Flattering. There are a number of BMDs, among them,
those most frequently used are Multileaf Collimators (MLC),
Shielding, Compensators, Wedge Filters, and Penumbra
Trimmers. We focus this paper on Wedge Filters, which are
used in general for relatively superficial tumors. Wedges can
be classified as: Universal, Dynamic, Virtual, and
Pseudo-Wedges.7

The use of wedges is justified for practical, technical and
economic reasons. High-quality alloy materials are not ex-
pensive, and the size of the wedges makes their handling,
change and substitution easy. Manufacturing of wedge filter
series with different angles (usually 15º, 30º, 45º, and 60º) is
neither difficult nor expensive. Alloy is a high-endurance
material which provides long industrial life for continuous
RT sessions. In addition, several combinations of wedges in
2D and 3D configurations may be used to obtain a series of
radiation distribution(s) to adapt the dose delivery to the
tumor shape with accurate approximations.
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FIG. 1: Two significant trial-statistical results about survival time for Breast (left) and Rectal cancer (right) [Cancer Study of Ragaz & Colleagues.2

The green arrows show the difference between the alternative treatments for both tumors. For Breast Cancer, the upper curve corresponds to the
survival time with RT-Chemo, and the lower to only Chemotherapy. For Rectum tumors, the upper curve is for RT with Surgery, and the lower is
for only Surgery. The difference of survival time is high from the approximately the 2nd - 3rd year after diagnosis-treatment on.In breast cancer the
difference of survival reaches, in some cases, a ratio higher than 20%.

However, some of the approximations published do not take
into account the specific 3D geometry of the wedge filter, and
avoid developing a formal general-geometrical calculation
based on a 3D planes intersection at an alpha angle (the
proper wedge angle). Therefore, both exact and approximated
calculations may be useful to add accuracy and simplicity to
the planning software, through practical formulas. What is
more, the wedge manufacturing can be designed and adapted
to the specific conditions of each accelerator type. And also
the materials could be improved to carry out a precise and
clean attenuation and filtration of the beam, avoiding big
dispersion, (contamination particles, mainly electrons, for-
ward/backward scatter, and others).

It is useful and efficacious to generate knowledge about the
different wedge options and combinations available to com-
plement the treatment protocols; RT in general, External
Beam Radiotherapy (EBRT), and IMRT. The direct practical
result is a series of wedge options to be selected by planners
according to the specific tumor types and shapes. The Coor-
dinate System is a practical reference in TPO which can be
used as general starting point to determine dose distribution
and obtain equations to develop the coordinate/planning
system. These geometrical formulas can be adapted or modi-
fied in IMTR for the different technical and mechanical op-
tions.

Therefore, the aim of this technical paper is to provide simple
geometrical calculations and approximations for wedge use.
We have developed the 2D/3D geometrical photon pen-
cil-beam path through the wedge. The selected model is the
AAA algorithm which integrates an attenuation factor into
the integral formula, when wedges are used for conformal
dose distribution. This exponential attenuation factor de-
pends on the 3D pathway of the pencil beam through the
wedge and its material. Secondarily, some approximations are
derived from the principal exact formulas, whose objective is
to provide practical mathematics for the planning system

software (e.g., to avoid sine, cosine, complicated quadratic
expressions, etc.). Limit Divergence Angle (LA) for optimal
positioning of beam is defined, formulated, and sketched.

In brief, the objective of this contribution is practical and
technical, in such a way that any RT researcher could develop
and improve further formulation for other RT Models/Dose
Delivery Systems. Finally, Simple Simulations are developed
to determine error magnitudes, with complementary infor-
mation about the mathematical development. Results ob-
tained in a simulation series, e.g., for 30º wedges, show ac-
ceptable RMS errors (~10-2) for the approximations carried
out. Simulations are based on random values, and located at
the positive quadrant (broad wedge part) of the wedge coor-
dinate system.

Methods and Materials

The Anisotropic Analytic Algorithm (AAA)
The Analytic Anisotropic Algorithm, AAA, is a well-known
and extensively used Superposition-Convolution Model in
RT. AAA is is evolved from an initial Integral Superposition
Convolution Model, whose parameters were optimized using
large Monte Carlo experimental data in water. The starting
Physical Equation to develop the model 8-11 was a Yukawa
Kernel based on the formulation structure of the classical
Yukawa Gaussian Potential for Electromagnetism, as follows,
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where Dp(r, z) the absorbed dose, normalized to one photon,
r is the radial coordinate
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in the transverse plane at depth z. The characteristic func-
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I(z) denotes the area integral of the dose over the transverse
plane of the pencil beam at depth z, normalized to one pho-
ton, and 2 ( )k z is the mean square radial displacement of
the profile at depth z. Next, a mathematical development
based also in experimental data and Fourier Transform, was
carried out 8-11, to transform the initial formula on a triple
sum of Gaussians (Superposition) from the initial simple
Gaussian, and optimize the coefficients according to photon
beam experimental data. As a result, the Pencil Model Dose
at a depth z and into an almost differential cylinder (Triple
Gaussian Pencil Beam) whose diameter is 2r is,
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FIG. 2: Sketch of a bixel (a quasi-differential rectangular prism (a pyramid), whose apex is at collimator output) which contains a Pencil-beam
whose path goes through the wedge with a divergence angle θ. A Voxel is a quasi-differential portion of volume almost parallelepipedic). We
detail complementary explanations about the Superposition-Convolution method to introduce the mathematical concept. Erratum: the limits of
the Convolution Integral for the bixel are not infinity and minus infinity. The limits are the values of u1' and u2' for the pixel of the wedge surface
that correspond to the selected bixel. To carry out calculations for a complete Treatment Planning Optimization and Computational Software
Development, it is necessary to also include the rotation angles of the gantry and the couch. This done by implementing the corresponding
matrices of rotations, and taking into account the Isocentre Position. This matter goes beyond the scope of this Technical Paper, which is focused
only on the wedges Pencil-Beam pathway. Note also that this Superposition-Convolution Integral Model corresponds to the initial stages of the
AAA algorithm development in water (constant density). It is not too complicated to implement these calculations on the recent AAA Formulas
fitted for heterogeneus tissues with the necessary correction factors.Erratum:in convolution formula z must be z'.
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FIG. 3: The intent here is to provide an easy path to understanding of the Geometrical method. The unitary vector n, which is perpendicular to
the inferior plane, is sketched with its projections. An arbitrary Pencil-Beam is drawn on the left to show the input and output points upon the
wedge volume. The broad part of the wedge corresponds to the positive quadrant of the superior U plane. Simulations were carried out just in this
part, at the positive quadrant.

Note that the positive Z-axis is towards the Isocenter and patient surface. In the articles of foundation of the AAA Model, the measurements of
the wedge are taken similar to the pictured one. That is, 2a, 2b, and 2c (we choose c instead 2c for simplicity).

We remind that a vector in 3D Analytic Geometry is defined by the difference of two points. The directional point (arrow) and the origin point
(usually at coordinate center). In the calculations the origin of the perpendicular vector is taken at coordinate centre, but in the picture is trans-
lated at the inferior plane surface to put forward the problem geometry with clarity.

FIG. 4: We show the Pencil-Beam Divergence Angle subdivision to get smaller angles in order to better approximate the tangent value by Taylor
Series, to the angle value in radians (first term of series, more options with more terms could be useful, but these are not linear). Note that this
positive quadrant is put at the broad part of the wedge for simulations.
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All the parameters are tabulated.8-11 The derivation of the
coefficient ck with the help of the Fourier transform, have
already been described in the papers.8-9 Tabulations of I(z),
σk(z), and ck , based on Monte Carlo calculations of photon
pencil beams for Co-60 gamma radiation and bremsstrahlung
from 6 to 18 MV, have already been published.8-9 This tri-
ple-Gaussian representation of the pencil beam has been
chosen because its convolution with the photon flux distri-
bution Ф(x, y, z) at depth z can be analytically performed in
many practical cases. An important contribution to the sav-
of computer time and storage space is thereby achieved, be-
cause numerical convolutions or applications of look-up
tables from their fitting formulas are partially avoided. The
analytical form of the resulting dose distributions may also
offer other, yet unknown, applications. The triple-Gaussian
pencil beam approach can be applied to radiation beam pro-
files that represent rectangular satellite blocks and wedge
filters, as it is the case of this paper. The derivation of the
coefficients ck with the help of the Fourier transform, have
already been described in the papers.9-11 The term 'Superpo-
sition' comes from the sum of three Gaussians into the inte-
gral. The term 'Convolution' comes from the mathematical
transformation carried out into the Dose-Deposition Kernel
at the Integral.

With this Triple Gaussian Dp (r,z), a Kernel K (x,y,u,v) was
constructed to implement the dose term into the integral
expression for the initial Superposition-Convolution Model
in water, and then, the integral dose results in general as
follows,

( , , ) ( ) ( , , ) ( , , ) (3)D x y z I z x y z K x y z ds
 

 

      
where I(z) is the area integral of the absorbed dose over a
plane perpendicular to the pencil beam axis at depth z per
incident photon [33], Φ is the photon flux distribution of the
beam per unit of intensity, and K is the kernel expression
corresponding to the PBM, which is called the PB dose ker-
nel, and describes the spatial distribution of the absorbed
energy. This kernel could perfectly include any other PBM,
for example the classic Anesjö model 12 or others. Now we
focus on the aim of this research. The complete Triple
Gaussian Pencil beam Model for water, when using wedges
angle α and taking into account the Collimator Divergence
Angle (usually very small), θ then reads (see Figure 2),
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Eq (4) [erratum, limits of integral -a, a, -b, b]

The Flux (and the Intensity) change with an exponential
attenuation factor that depends on the alloy material, μw, and
the pathlength through the wedge LK in this way,
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This point will be explained in detail in the next subsection.
The intention here is to show the complete formula used to
obtain the geometrical results, as we are only interested in
determination of LK. Recently 9, a new contribution by the
same authors for a 3D superposition-convolution algorithm
based on their already developed, Triple Gaussian Pencil
Beam Model (TGPBM). This algorithm has been built up
results of Monte Carlo calculations. This superposi-
tion-convolution algorithm sorts the density changes of the
tissue heterogeneities. An essential result of this algorithm is
the determination of build-up and build-down effects in the
domain of the density discontinuities. The corresponding
practical measurements show a standard deviation of about
2%. We won´t describe the long theoretical framework and
development of this algorithm, because what is of practical
importance for the understanding is that the complete dose
distribution formula (41) of the article 10-11 for heterogeneous
tissues reads,
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Where β is the number of pencil beams, SADβ is the focus to
surface distance of the pencil β, Φβ is the flux for the β pencil
beam, Hβ is the kernel containing the pencil beam model (we
can choose the model (that is, H (u-x´,v-y´,z´)). Iβ is the area
integral of the absorbed dose and its expression is given in
formula (33) of the Ulmer et al articles 8-11, Eel,β is the energy
of the electrons in the β pencil beam given again by formula
(22), Φel,cont is the flux of the contamination particles, mainly
electrons, and given by formula (33), Kel,β is the dose deposi-
tion kernel due to contamination electrons and is adapted by
formula (23). Finally, Erelease is the energy released by local
disequilibrium of forward and backward scatter and given by
the formula (38). To implement in software and use this
formula in mathematical calculations may appear to be
difficult, but several parts have a simple development and
others result null in specific cases.
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Where Φz' (α, θ, u’1, u’2, z) is of the form (depending on the
wedge angle alpha and the divergence angle theta):
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Because of we apply the Inverse Square Law (ISL) of flux
propagation for photons.1 That is, we take as reference the
wedge surface flux for ФW and this value decreases along the
coordinate of the pencil beam according to the ISL. In the
same way, the variation of the coordinates values from the
pixel of wedge filter surface to the bixel base can be deter-
mined by trigonometric proportions from the triangles of the
quasi-differential pyramid of the bixel as follows,
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ФW is the uniform initial flux  incident on the upper wedge
plane U. And μw is the attenuation coefficient of the wedge
material and LK = LK (α, θ, u'1, u'2, z') is the distance,

1 0 (10.2)KD P P L= - = - - - -

that the pencil beam P (ϴ) travels into the wedge. The quan-
tity I(α,z') can be approximately calculated from the empiri-
cal formula,
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However, the calculation of Intensity related to wedge angle
is not the focus of the paper. These formulas are well de-
tailed in the references about the primary stages of the AAA
model. The parameters d1, d2, μ, q, and Cw are tabulated.9,10

The modification is required because the wedge changes the

1

We detail the mathematical development of the ISL applied on Flux
calculations;  we have at collimation output point a flux, Ф0 , then,
at wedge surface (still air) we get (ISL) as detailed in [Eq 9], then and
at any point z’ of the bixel, for the same ISL,
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which is the same expression of [Eqs 8, 9].

energy spectrum of the photon beam. The integral detailed
above is only an approximation for the dose, since the patch
of the patient surface is not necessarily a plane, which is
oriented transversally to Z' axis.
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In this Formula we have set the limits for the Coordinates u'1
and u'2 related to the difference of vectors u1 and u2 that de-
the Coordinates System of the Central Axis Beam. There are
other techniques to sort these calculation(s). Here LK (α, θ,
u'2, z') is the distance D of the pathway through the wedge.
This integral is developed numerically (Gauss-Quadrature
preferably) to obtain the dose for this bixel. To determine
total dose-deposition, it is necessary to add another summa-
tion which gathers all the bixels which comprise totally the
wedge surface, and therefore the summation of the Pen-
cil-Beams (each one with proper characteristics as it is done
in IMRT).13-16

Geometrical calculations
In this Section we show the Analytic Geometry calculations
to obtain the exact length of the pathway of a pencil beam
when it goes through a point of the wedge upper, (superior)
surface, P0 , and emerges in air from the lower, (inferior)
surface of the wedge at P1 [Figure 3]. This distance D, is given
in 3D by the formula,

1 0 (13)KD P P L= - = - - - -

The method designed to find the formula for the Distance D,
has the following steps,

I. Determination of the 3D Equations of the superior and
inferior plane (at an alpha angle with the superior plane).
II. Find the 3D straight line equation (the Pencil Beam
quasi-differential cylinder of very small radius) that goes
from the collimator output window to the point P0 on the
wedge surface.
III. Find the intersection point between the inferior plane
of the wedge and this line. That is, the point P1.

IV. Calculate the distance D with the above formula.
V. The Distance D mathematical formula is simplified and
formatted correctly to carry out convenient approximations
(next section Approximations and mathematical analysis).

In Figure 2 we show the basic calculation system of the dis-
tance D, and the corresponding Coordinate System. The
wedge superior plane, since the main coordinates system is

© Casesnoves ISSN 2330-4049
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the center of the superior surface is,
0 (14)z     

To obtain the inferior plane equation we use the vectorial
formula for a plane equation in 3D, with a dot product,

0( ) 0 (15)n x x      
  

That is, the coordinate system is (u1, u2, z), with coordinate
origin in the superior plane of the wedge, and Z direction
towards the beam propagation (that is, towards the patient
body). We use a unitary vector of modulus 1, n, and compo-
nent u2 null.

Since this vector is perpendicular to the lower wedge plane, it
holds an angle alpha with Z Axis, and л/2-α with the u1 axis.
The wedge dimensions are 2a length, 2b width, and c depth.
Therefore, the maximum depth, d (z value) at the center is d =
a tanα; [Figure 3]

The vector group corresponding to the above [see Figure 2]
formula is [Eq 16]
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This yields, applying the previous equation with these vectors

1sin  cos  sin 0 (17)u z a        
which is the equation for the inferior plane. Next, we calcu-
late the equation of the straight line that gives the trajectory
of a pencil beam emerging from the collimator output with a
small divergence angle θ, and we apply the 3D Analytic
Geometry Equation for the straight line,
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We have two points, first, the output point, X0 of the colli-
mator, as detailed above. Second, an arbitrary point at the
superior wedge surface, with the coordinate system of the
superior wedge surface, that is X1 as detailed above. There-
fore, we get the straight line equations,

1 2 2

; (19)
x y y z

= =
u u u P

   




And we have the third equation for the inferior plane [Eq 18],
so we have a linear system of 3 equations in 3 variables,
sinα u1 - cosα z + a sinα = 0 ;
The solution of the linear equations system is straightforward

as follows,
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The final step is to determine the distance,

1 0 (21)KD P P L= - = - - - -

Whose expression is,
2

1 int sec
2 2

2 int sec
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With the result,
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According to Figures 2, 3, and 4, we can introduce in the
above formula the collimator pencil-beam divergence angle
as follows, P = P (θ) cos θ. This substitution works if we want
to implement the θ variable in the general formula. In the
next section we detail the approximations to make this rather
complicated formula easier to calculate and simplify it as
much as possible. According to the exponential attenuation
factor into the integral dose formula D = LK (Exact Pen-
cil-Beam Pathway Value). This substitution works if we want
to implement the θ variable in the general formula. In the
next section we detail the approximations to make this rather
complicated formula easier to calculate and simplify it as
much as possible. According to the exponential attenuation
factor into the integral dose formula D = LK (Exact Pen-
cil-Beam Pathway Value).

Approximations and mathematical analysis

© Casesnoves ISSN 2330-4049



Volume 2 • Number 3 • 2014 International Journal of Cancer Therapy and Oncology 9
www.ijcto.org

We start with the previous rather extensive formulation of
[Eq 23],

2
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2
1

1

2 2
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1 1
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Which was set previously as, P = P(θ) cosθ.

Now, we will define two Pencil-Beam Divergence Angles
related to θ, namely, θ1 and θ2 with the trigonometric
conditions of Figures 4, and, tan θ1 = u1 / P and tan θ2 = u2 / P.

Proposition 1
In pencil-beam angle decomposition, θ1 and θ2 are always less
than or equal to θ.
The objective of this Proposition is to carry out approxima-
tions with the smallest angle values possible, making series
developments optimal.

Proof
Since (Figure 4),

2 2

1 1 2

2 2

2 1 2

(24)
u u u

u u u
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Therefore, the Proposition is proven.

And, considering series development for tangent small an-
gles, the following conditions will be accomplished,

1 2

2 2

(26)
 

 


   







which was the objective to minimize errors in the approxi-
mations. Then, we carry out the following changes to in-
these divergence angle(s) and simplify the initial formula
(Exact Pencil-Beam Pathway Formula),
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Hence, making the previous trigonometric changes for small
angles (Approximated Pencil-Beam Pathway Formula),
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Now we have only 5 linear variables within the brackets of
the formula, namely, u1, u2, θ1, θ2, θ (optional) and the wedge
angles constant α.

Computational simulations and software
A series of simple and basic simulations [Annex A] were
carried out to check the accuracy of the approximations and
the algebraic development. Simulations were made at the
positive quadrant of the thick part of the wedges.The accu-
racy is given by the error formula of section Error calcula-
tions & further approximations. The software used was
FreeMat v4.0 (Copyright (c) 2002-2008 by Samit Basu Li-
censed under the GNU Public License (GPL)) programming
and Optimization Subroutines both in single and double
precision [C4]. The trajectory of the Pencil Beam for each
simulation and the corresponding divergence angle were
selected randomly.

The divergence angle interval was chosen narrow, since the
divergence angles are usually small in modern accelerators
which work with IMRT. It is very important to clarify that
when the wedge angle increases, the simulation quadrant for
u1 and u2 has to be reduced. The geometrical reason is that
there is a Limit Divergence Angle θ for the pencil beam. If
this divergence angle is surpassed, the outpoint of the beam
after passing through the wedge is located at the lateral
side/wall of the wedge (we refer mainly to the broad part of
the wide-angle wedge). This inconvenient is especially pre-
sent when we simulate paths through wide-angle wedges. In
Annex A, some details about the Limit Angle are specified,
mainly concerning wedges with wide angle, ie, 45º and 60º.

Error calculations & further approximations
The calculation of the Error for a wedge of angle alpha is the
Standard RMS Equation where we measure the average
quadratic difference between the exact pathway along the
wedge material and the approximated path, according to the
calculations carried out in section Approximations and
mathematical analysis. The RMS Error Formula reads,
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2

1 (29)

N

Exact ApproximatedD D
E

N


    









Where N is the number of random pathways selected in the
simulations. Note that in Annex A Tables, we write positive
error values, but negative are also mathematically consid-
ered.
The 10 simulations carried out for, i.e. a 30° Wedge give a
RMS Error [Table 2], in the order of 10-3. The tangent ap-
proximation in series development results in small errors
because the angles at P = 20cm (distance from the Collimator
Output) are also small. The random numbers interval chosen
was at the positive quadrant of the broad zone. Usually, the
approximated values are larger than the exact ones.

For mathematical analysis, it is both practical and useful to
determine what we define as Exponential RMS Error. That
when we use approximations, the exponential attenuation
factor of the wedge filter is set into an interval determined
the numerical errors. Specifically, we are calculating an ap-
proximated LK parameter, which is in the exponent of an
Integral Exponential Factor (IEF). We have, without ap-
proximations,

1 2( , , ' , ' , ')( ) w KL u u zIntegral Exponential Factor IEF e   

Then, since we have determined an approximated LK with
RMS Error, the True L’K will be determined within the error
interval, so we set a standard Confidence Interval as,

' [ 3 , 3 ]K K KL L L   

and the modified True Integral Exponential Factor reads,
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In consequence, we define the RMS Error Integral Exponen-
tial Factor, to set a trustworthy Confidence Interval (Note
that the width of the Confidence Interval can be chosen
larger or smaller), as follows,

1 2[ 3 ] ( , , ' , ' , ')(EIEF) w u u zError Integral Exponential Factor e     

A numerical example with the obtained simulation data at
30º whose Absolute Error is 0.0441 (Annex A Table 2) is,

1 2

1 2

[ 3 0.0441]( , , ' , ' , ')

[ 0.1323]( , , ' , ' , ')

( ) w

w

u u z

u u z

Error Integral Exponential Factor EIEF e

e

  

  

  

 

 



And the Exact Dose Confidence Interval, taking the Average
LK value for 30º (10.3197cm) is,
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With µw values for Alloy tabulated [U2].

We also set the RMS Average Error Integral Exponential
Factor, as the average of the distance D Error ɛA, after we
have taken sufficient random RMS measurements along all
the wedge surface. These measurements have to take into
account the Limit Divergence Angle, θL. Limit Angle math-
ematical details are explained in section Beam limit diver-
gence angle (LA) concept and formulation with appropriate
formulation. Then, this Integral factor reads,

1 2[ 3 ] ( , , ' , ' , ')w A u u zAverage Error Integral Exponential Factor e     

The exponential factors always can be approximated by se-
development. We do not carry out this kind of mathematical
framework in this contribution, which will be developed in
subsequent publications. The study of how much this kind of
approximation of exponential is useful corresponds to ap-
proximation theory.

Hence, the Approximated Dose Integral, when using ap-
proximation LK (without Confidence Interval), will result,
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And the Average Error Integral Factor has been set outside
of the integrand because it is considered average and
constant for all the values belonging to the integral Hence,
the Approximated Dose Integral, when using approximation
LK (without Confidence Interval), will result,

,
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(31)
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A formula which is useful both for industrial manufacturing
purposes or treatment planning optimization approximations
when using static wedge filters. The Relative RMS Error
Formula which has been applied in the tables of Annex A
reads,

( )

100
Relative RMS Error (32)

Exact Average

E

D
     

 
 
 

where Eα is the RMS Absolute Error [Eq 29]. Note that in
Annex A Tables we write positive error values, but negative
are also mathematically considered. The Relative
Approximation Error is under 5% when the wedge angle is
small, 15º or 30º, and rises about 10% when the angle is
wider, i.e., 45º, or 60º. The explanation for this increment is
that we use only the first term of the tangent series
development. Therefore, when both the exact and
approximated paths increase, the difference between them
becomes higher for trigonometric reasons.  A possible
solution is to use more terms of the series, or develop further
geometrical approximations.

Beam limit divergence angle (LA) concept and formulation
In previous contributions 16,17, the LA was mathematically
defined and developed for wedges. We detail here the main
formulas and one sketch of LA, together with a picture of the
so-called Conformal Wedge.18 Given a fixed collimator
to wedge surface distance, LA is defined as the maximum
angle of divergence that can be reached by the whole
radiation beam without emerging at any point of lateral
of the wedge. Photon-Beam divergence angles values vary

around 20 degrees. The Beam minimum divergence depends
on the collimator design quality, and in general of the
precision engineering manufacturing of the LINACs. LA is
useful because of several reasons. Avoids hot spots,
sub-optimal dose delivery, planning system software
propagation errors, overdose at OARS, and repetition of
planning work caused by sub-optimal dose delivery
calculations. The LA for a conformal wedge calculation
presents some additional difficulties. However, the primary
approximation is to take as LA for a Conformal Wedge the
value of the deepest step of the wedge. Main formulation for
LA in standard wedges is for the principal pencil beam

θL [Geometrical]= arctg ([r] u2=0 )/P

where

r = b- tgθ tgα (b+a) = r (θ)

from [22]

r = b- tgθ [tgα [(b2- u22)1/2 + a]] = r (θ)

where P is the distance between the collimator output and
wedge surface (perpendicular, 17) and we have used the con-
straint for inferior geodesic .17

u12 + u22 = b2

Therefore, to make sure the components of the decomposed
beam have a correct output point the following conditions
should hold

 
  

1

2

 arctan (a / P  2c  
(33)

 arctan a / P  c     





 
   

 





Discussion and Conclusion

The pathway in IMRT for static wedges has been determined
using an integral Superposition-Convolution Model for Pen-
cil Beam. The radiation delivery model selected was the
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Superposition-Convolution model with wedge attenuation
factor.

The calculation result for 3D is according to the fundamen-
of Analytic Geometry. The applied Formulation is the stand-
ard in this kind of determinations. We have tried to clarify
any kind of complicated mathematical development, formu-
lation and expression. Additional approximations to avoid
complicated functions, such as trigonometric or quadratic
expressions, have been done taking into account the small
divergence angle of the collimator output, θ. These approxi-
mations were based mainly on Taylor series development
related to trigonometric functions. For instance, the Numer-
ical RMS Error for a 30° Wedge series of 10 simulations is
about 10-2 and this magnitude can be considered acceptable,
present investigation stage. We found a Limit Divergence
Angle θ related to the central beam, which constitutes an
important parameter to avoid the output of the beam mainly
through the lateral broad part of the wedge (this phenome-
non happens mainly in wedge filters of wide angle). Details
about this LA have been explained according to previous
publications. Industrial applications of this method are fo-
cused on several RT areas. In IMRT, the use of
verified theoretical data of the attenuation of the wedge
its surface, could yield an improved clinical use of the IMRT
distribution, and obtain a database for planning system im-
provements. In addition, it could be employed to develop
better attenuation factors for RT mathematical modelling in
IMRT or External Beam Radiotherapy (EBRT), according to
the geometrical distribution data of the 3D paths along the
wedge volume. Furthermore, Nonlinear Optimization Tech-
niques could be used with Multiobjective Techniques 19 for a
better combination of the Attenuation Factor(s), wedge zone
and IMRT Pencil Beam Intensity Attenuation Factor(s).
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Annex A

FIG. 5: Approximations for the LA in standard wedges 17,18 and a picture of 2-steps conformal wedge.18

TABLE 1: 150 Wedge filter angles. Simulation carried out at positive quadrant of the broad part of the wedge. Selected wedges are sloping sur-
face straight type.

Simulations results for 15° wedge (Standard Manufacturing Size)
Angle=15° P=20cm d=15 × tan15°=

=4.0192cm
d=Central Depth

a=15cm b=10cm c=8.0370cm Hypotenuse=
31.0579cm

Comment:
results with

simple preci-
sion

Simulation Random P0

coordinates (cm)
(1)u1 (2)u2

Angles (Radians)
(1) θ1 (2) θ2

(1) LK EXACT(cm)
(2) LK APPROX

(cm)

Absolute error
magnitude
10-X (cm)

Absolute error
Exact-Approx

Magnitude Sign

Difference
(cm)

Comments: a

(see below the
table)

1 1.-5.6392
2.-5.3133

1.-0.2748
2.-0.2579

1.-7.4613
2.-7.4961

-2 - -0.0348

2 1.-0.2751
2.-9.9580

1.-0.0138
2.-0.4620

1.-9.0761
2.-9.0465

-2 + +0.0294

3 1.-13.7013
2.-2.0792

1.-0.6006
2.-0.1036

1.-11.5419
2.-11.9423

-1 - -0.4004

4 1.-5.3698
2.-4.9211

1.-0.2623
2.-0.2413

1.-7.1613
2.-7.1882

-2 - -0.0269

5 1.- 11.4060
2.-7.5968

1.-0.5183
2.-0.3630

1.-11.4797
2.-11.7213

-1 - -0.2416

6 1.-12.1152
2.-3.3648

1.-0.5446
2.-0.1667

1.-10.6943
2.-10.9568

-1 - -0.2625

7 1.-1.4851
2.-8.6696

1.-0.0741
2.-0.4090

1.-8.1064
2.-8.1918

-2 - -0.0854

8 1.-7.4585
2.-2.7140

1.-0.3569
2.-0.1349

1.-7.6123
2.-7.6620

-2 - -0.0497

9 1.-5.2172
2.-2.1740

1.-0.2552
2.-0.1083

1.-6.1891
2.-6.2023

-2 - -0.0132

10 1.-0.4147
2.-6.8971

1.-0.0207
2.-0.3321

1.-6.8360
2.-6.8776

-2 - -0.0416 Relative Error
2.0%

Average N/A N/A LK EXACT (cm)
Average: 8.6158

-2 - - RMS Error
[0.1738]

Comments: a = Since the wedge angle is tight, the error values are low and the limit angle is not reached in the simulations. The chosen range of
simulations is, u1 є [0, 15] u2 є [0, 10]
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TABLE 2: 300 Wedge filter angles. Simulation carried out at positive quadrant of the broad part of the wedge. Selected wedges are sloping sur-
face straight type.

Simulations results for 30° wedge (Standard Manufacturing Size)
Angle=30° P=20cm d=15 × tan30°=

=8.6603cm
d=Central Depth

a=15cm b=10cm c=17.3205cm Hypote-
nuse=34.64

10 cm

Comment: results
with simple preci-

sion, and Limit
angle rather small

Simulation Random P0

coordinates (cm)
(1)u1 (2)u2

Angles (Radians)
(1) θ1 (2) θ2

(1) LK EXACT(cm)
(2) LK APPROX

(cm)

Absolute error
magnitude
10-X (cm)

Absolute error
Exact-Approx

Magnitude Sign

Difference
(cm × 10-2)

Comments: b

1 1.-3.7595
2.-2.6566

1.-0.1858
2.-0.1321

1.-9.9988
2.-9.9914

-3 + 0.7400 Comment: c

2 1.-0.1834
2.-4.9790

1.-0.0092
2.-0.2440

1.-9.1418
2.-9.1631

-2 - -1.3300

3 1.-9.1342
2.-1.0396

1.-0.4284
2.-0.0519

1.-12.3561
2.-12.2584

-1 + 9.7700

4 1.- 3.5799
2.- 2.4605

1.-0.1771
2.-0.1224

1.-9.9161
2.-9.9095

-2 + 0.6600

5 1.-7.6040
2.-3.7984

1.-0.3633
2.-0.1877

1.-11.7283
2.-11.6728

-1 + 5.0500

6 1.-8.0768
2.-1.6824

1.-0.3838
2.-0.0839

1.-11.8638
2.-11.7826

-1 + 8.1200

7 1.-0.9900
2.-4.3384

1.-0.0495
2.-0.2134

1.-9.2506
2.-9.2581

-3 - -0.7500

8 1.-4.9723
2.-1.3570

1.-0.2437
2.-0.0677

1.-10.4280
2.-10.4095

-2 + 1.8500

9 1.-3.4781
2.-1.0870

1.-0.1722
2.-0.0543

1.-9.8107
2.-9.8037

-2 + 0.7000 Comment: d

10 1.-0.2764
2.-3.4485

1.-0.0138
2.-0.1707

1.-8.9449
2.-8.9481

-3 - -0.3200 Relative Error
0.43%

Average N/A N/A LK EXACT (cm)
Average: 10.3442

Approx (-2) + - RMS Error
[0.0441]

Comments: b = In general, when the wedge angle is small we find lower RMS Errors. Simulations ranges to avoid Limit Angle, u1 є [0, 10] and u2

є [0, 5]; c = All these value shows small differences, probably not exceeding the limit angle, at the thick part of the wedge; d = High precision in
approximations, very low relative error.
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TABLE 3: 450 Wedge filter angles. Simulation carried out at positive quadrant of the broad part of the wedge. Selected wedges are sloping sur-
face straight type.

Simulations results for 45° wedge (Standard Manufacturing Size)
Angle=45° P=20cm d=15 × tan45°=

=15cm
d=Central Depth

a=15cm b=10cm c=30cm Hypote-
nuse=42.462

4 cm

Comment: re-
sults with simple

precision
Simulation Random P0

coordinates
(cm)

(1)u1 (2)u2

Angles (Radians)
(1) θ1 (2) θ2

(1) LK EXACT(cm)
(2) LK APPROX

(cm)

Absolute
error magni-
tude 10-X (cm)

Absolute
error Exact-

Approx Mag-
nitude Sign

Difference
(cm)

Comments: e

1 1.-5.6392
2.-5.3133

1.-0.2748
2.-0.2597

1.-20.8923
2.-20.6841

-1 + 0.2082

2 1.-0.2751
2.-6.8971

1.-0.0138
2.-0.3321

1.-15.2995
2.-15.3216

-1 - -0.0221

3 1.-13.7013
2.-9.9580

1.-0.6006
2.-0.4620

1.-53.0567
2.-49.2880

+2 + 3.7687 Comment: f

4 1.- 5.3698
2.- 2.0792

1.-0.2623
2.-0.1036

1.-20.5059
2.-20.3335

-1 + 0.1724

5 1.-11.4060
2.-4.9211

1.-0.5183
2.-0.2413

1.-36.1161
2.-31.6040

+1 + 4.5121

6 1.-12.1152
2.-7.5968

1.-0.5446
2.-0.3630

1.-40.1691
2.-33.7317

+2 + 6.4374

7 1.-1.4851
2.-3.3648

1.-0.0741
2.-0.1669

1.-16.2177
2.-16.2164

-3 + 0.0013

8 1.-7.4585
2.-8.6696

1.-0.3570
2.-0.4090

1.-24.0277
2.-23.3606

+1 + 0.6671

9 1.-5.2172
2.-2.7140

1.-0.2552
2.-0.1349

1.-20.2948
2.-20.1398

-1 + 0.1550

10 1.-0.4147
2.-2.1740

1.-0.0207
2.-0.1083

1.-15.3259
2.-15.3260

-3 - -0.0001 Relative Error
10.6%

Average N/A N/A LK EXACT (cm)
Average:26.1906

Approx (-1) + - RMS Error
[2.7667]

Comments: e = In general, when the wedge angle increases we find bigger RMS Errors; f = This value shows large differences, at the edge of the
wedge
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TABLE 4: (600 Wedge filter angles. Simulation carried out at positive quadrant of the broad part of the wedge. selected wedges are sloping sur-
face straight type)

Simulations results for 60° wedge (Standard Manufacturing Size)
Angle=60° P=20cm d=15 × tan60°=

39.6868cm
d=Central Depth

a=15cm b=10cm c=51.9630cm Hypote-
nuse=60.00

13 cm

Comment: results
with simple preci-

sion and Limit
angle rather small

Simula-
tion

Random P0

coordinates (cm)
(1)u1 (2)u2

Angles (Radians)
(1)θ1 (2)θ2

(1) LK EXACT(cm)
(2) LK APPROX

(cm)

Absolute error
magnitude
10-X (cm)

Absolute error
Exact-Approx

Magnitude Sign

Difference
(cm)

Comments: g

1 1.-3.7595
2.-1.6824

1.-0.1858
2.-0.0839

1.-38.7109
2.-38.4867

-1 + 0.2241

2 1.-0.1834
2.-4.3348

1.-0.0092
2.-0.2134

1.-26.4379
2.-26.4335

-3 + -0.0044

3 1.-9.1342
2.-1.3570

1.-0.4284
2.-0.0677

1.-133.3144
2.-106.4321

N/A + N/A Comment: h

4 1.- 3.5799
2.- 1.0870

1.-0.1771
2.-0.0543

1.-37.7974
2.-37.6132

-1 + 0.1842

5 1.-7.6040
2.-3.4485

1.-0.3633
2.-0.1707

1.-79.5939
2.-72.8153

+1 + 6.7786

6 1.-8.0768
2.-1.1524

1.-0.3838
2.-0.0576

1.-92.5962
2.-81.9065

+2 + 10.6897

7 1.-0.9900
2.-0.8604

1.-0.0495
2.-0.0430

1.-28.4247
2.-28.4225

-3 + 0.0022

8 1.-4.9723
2.-1.9489

1.-0.2437
2.-0.0971

1.-46.1437
2.-45.4181

-1 + 0.7256

9 1.-3.4781
2.-4.7723

1.-0.1722
2.-0.2342

1.-37.5258
2.-37.3406

-1 + 0.1852

10 1.-0.2764
2.-3.7052

1.-0.0138
2.-0.1832

1.-26.6454
2.-26.6429

-3 + 0.0025 Relative Error
9.2%

Average N/A N/A LK EXACT (cm)
Average: 45.9862

Approx (-1) + - RMS Error
[4.2277]

Comments: g =In general, when the wedge angle increases we find bigger RMS Errors. Simulations ranges to avoid limit angle, u1 є [0, 10] u2 є [0,
5]; h = This value shows large differences, probably exceeding limit angle, then it is discarded.
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