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Abstract

Purpose: The aim of this work was to assess and to quantify, for clinical practice,
the differences in computed doses using two types of dose calculation algorithm for
the heterogeneity correction including target volumes and organs at risk (OARs).
Methods: 35 patients having lung, breast, spine, head & neck, brain and pelvic
tumors, were studied. For each patient, 2 treatment plans were generated. In plan
1, the dose was calculated using the Modified Batho's (MB) density correction
method integrated in the Pencil Beam Convolution algorithm. In plan 2, the dose
was calculated using the Anisotropic Analytical Algorithm (AAA). To compare the
two plans a dosimetric analysis was carried out including cumulative and
differential dose volume histograms (DVH), coverage index, and conformity index.
Wilcoxon signed rank and Spearman’s tests were used to calculate p-values and
correlation coefficients (r), respectively. Bootstrap simulation with 1000 random
samplings was used to calculate the 95% confidence interval (95% CI). Results:
The analysis of DVH showed that the AAA method calculated significantly higher
doses for OARs for all cancer sites and lower doses for target volumes, especially
for targets located in lung, with p < 0.05. The data demonstrated a strong
correlation between MB and AAA for all cancer sites with r > 0.9. Conclusion: This
study confirms that using the AAA integrated into Eclipse® TPS, the calculated dose
will be increased to OARs, and reduced to target volumes. Thus, when changing
from the MB algorithm to AAA, attention should be paid to avoid any bias of
over/under estimating the dose given by AAA and to hold discussions between
physicists and oncologists regarding any necessary modification in the prescription
method.
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1. Introduction

Recent advances in radiotherapy have introduced
several new dose calculation algorithms to accurately
compute the prescribed dose according to the variable
density of heterogeneous tissues.

The former algorithms used a correction factor to take
account of the heterogeneity of tissues, e.g. density
correction methods are integrated into the Pencil Beam
Convolution algorithm (PBC) in the Eclipse® Treatment
Planning System (TPS) (Varian Medical Systems, Palo
Alto, CA), such as the Modified Batho's (MB) density
correction method. In these algorithms, the alteration in

the lateral transport of electrons is not modelled.15
Presently, numerous algorithms approximate the
transport of electrons, such as the Anisotropic Analytical
Algorithm (AAA) and Collapsed Cone Convolution (CCC)
implemented, respectively, in the Eclipse® and Pinnacle®
TPS (Philips Radiation Oncology Systems, Fitchburg,
WI). More recently, Acuros XB (Varian Medical Systems,
Inc., Palo Alto, CA) solves the linear Boltzmann transport
equation. In contrast to AAA, the Acuros XB algorithm
calculates dose to a medium, which can be converted
into the dose to water for treatment plan evaluation.
Several studies have demonstrated that AAA and Acuros
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XB algorithms were more accurate for the calculation of
dose within heterogeneous media.[®°1 However, we have
little knowledge about the impact of heterogeneity
corrections on target volume and organs at risk using
the AAA algorithms in clinical practice. Recently,
numerous studies, recommended that a sufficient
number of cases for each anatomical site should be used
to evaluate the dose difference resulting from the former
and the new algorithms®. In the present study, we assess
and evaluate what the impact would be, when switching
from MB to AAA, on doses for six cancer sites exhibiting
lower or higher tissue densities.

2. Methods and Materials

2.1 Clinical cases and treatment planning

This study is based on 35 patients and includes six
different cancer types. These cases were chosen to cover
the full range of tumors treated in radiation oncology,
namely: lung, breast, spine, head & neck, brain and
pelvis. A computed tomography (CT-scan) was carried
out for each patient. Then the images were loaded into
the TPS. The virtual simulation for each patient was
generated by a digitally reconstructed radiograph and
beam's eye view information. The planning target
volumes (PTVs) including the security margins, and the
organs at risk (OARs) were delineated by the radiation
oncologist. Table 1 shows the tumor locations, the
number of PTVs, the prescribed dose and the treatment
fields for all cases.

For each patient, two treatment plans were generated.
In plan 1, the dose was calculated using the MB method
in combination with the PBC algorithm; this was taken
as the reference dose. In plan 2, the dose was calculated
using AAA. The reference treatment plans were designed
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according to the clinical experience of the specialist
department and ICRU recommendations. These
reference plans were validated by a medical physicist
regarding two criteria: i) that 95% of the prescribed
dose encompassed the PTV and the maximum dose
within the PTV was under 107% of the prescribed dose;
ii) for OARs, that the recommended dose constraints
were respected. Table 2 shows the dose constraints
considered for the OARs in all cancer cases. The choice
of plan 1 as the reference plan is based on current
clinical results which have been obtained over many
years of clinical experience.

2.2 Treatment plan evaluations

2.2.1 Dosimetric analysis

Dose Volume Histogram (DVH): for each PTV, the
minimum dose (Dmin), mean dose (Dmean), maximum
dose (Dmax) and the calculated dose to 95% of the
target volume (D95%) were compared using cumulative
cDVH. The dose constraints for each OAR, presented in
Table 2 were compared.

Quality indices: the Coverage Index (CI) and
Conformity Index for the target volume (CITV) proposed
by the Radiation Therapy Oncology Group (RTOG) were
compared using the following equations1%11:

_ Imin

a==2 (1)

Where Imin is the minimal isodose in gray surrounding
the target and Rl is the reference isodose in gray.

Volume receiving 95% of prescribed dose

CITV = TV (2)
where TV is the target volume.

Table 1: Tumor locations, the PTV, the prescribed dose and the treatment fields for all patients.

Cancer sites PTV cc Prescribed dose [Gy] Techniques Energy Total fields
average * o average [min-max] [MV]
Lung 394 + 194 58.8 [50.8 - 66] 3DRT 18 34
(n=6)
Breast 1059 +248 47.2 [40 - 50.6] 3DRT 6and 18 38
(n=6)
Spine 465.4 +221.6 10 [8 - 20] 3DRT 6and 18 19
(n=6)
Head & neck 228.2+1359 56.9 [44.0 - 69.9] IMRT 6 34
(n=6)
Brain 318.2+339.1 57 [54 - 66] IMRT 6 25
(n=5)
Pelvis 276.7 £249.3 65.3 [52.7 - 76] IMRT 6 42
(n=6)
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Table 2: Dose constraints for OARs in all cancer cases.

Cancer sites OARs Dose constraints
Lung Lung (minus the PTV) V20 Gy < 30%
V30 Gy <20%
Spinal cord + 2 mm Dmax < 45 Gy
Heart V40 Gy <30%
Breast Lung V20 Gy <30%
V30 Gy < 20%
Heart V40 Gy <30%
Spine Spinal cord Dmax < 45 Gy
Kidney Dmean < 18 Gy
Head & neck Spinal cord Dmax < 45 Gy
Parotid Dmean < 24 Gy
Larynx Dmean < 50 Gy
Oral cavity Dmean < 30 Gy
Brain Brain stem Dmax < 55 Gy
Cochlea Dmax < 54 Gy
Optic nerves Dmax < 55 Gy
Optic chiasm Dmax < 54 Gy
Pelvis Bladder V60 Gy < 50%
Dmax < 78 Gy
Rectum V60 Gy < 50%
Dmax < 74 Gy

Femoral head

V50Gy < 10%

The dose homogeneity inside the PTV were compared

using the S-index associated with the differential dDVH
12.

'TZVI(DG) — Dmean) 2

= (3)

S —index =

TV

where D(j) is the relative dose in voxel j of the lesion,
Dmean is the average relative dose in the lesion and TV

is the target volume in elementary voxels.

2.2.2 Statistical analysis
For each patient, to compare plan 2 with plan 1, the
difference in percentage was calculated as:

ADose (%) = (Daaa— Dmg) x 100 / Dasa (4)

Positives values indicate that the calculated dose using
plan 2 with AAA was higher than the calculated using
plan 1 with MB (Daaa> Dmg) and negative values mean
the opposite (Daaa< Dus).

The Wilcoxon signed rank test was used to calculate the
p-value. A bilateral statistical test was realized with an
error o = 5%, corresponding to a 95% confidence
interval (95% CI). The dose difference is considered
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significant if p < 0.05. Data are presented as average (1)
+ standard deviation (SD). Spearman’s test was used to
calculate the correlation coefficient (r). A bootstrap
simulation method with 1000 random samplings was

used to calculate the 95% confidence interval, 95%CI. 13
14

3. Results

3.1 Dose volume histograms (DVH)

Tables 3 and 4 summarize the dosimetric and statistical
results for PTVs and OARs. In Table 3, it can be seen that
AAA algorithms calculated a significantly lower dose for
PTVs located in the lung, with p < 0.05. In Table 4, it
appears clearly that, the dose calculated for OARs by
AAA was higher than using the MB algorithm.
Spearmen’s test showed a strong correlation with r > 0.9
for all dosimetric parameters. Figure 1 shows c¢DVH
calculated using MB for plan 1 and AAA for plan 2.

3.2 Quality indices

Figure 2 shows the S-index values associated with dDVH,
using a boxplot representation. It can be seen in Figure 2
that MB calculated more homogenous dose distribution
than AAA with p < 0.05 and r > 0.9. Figure 3 shows the
indice values using a boxplot representation.
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Tables 3: The dosimetric and statistical results for PTVs. The average () presents the dose difference in % and SD presents
the standard deviation.

Cancer sites Dose u+SD 95% CI r-value p-value
Lung Dmin -8.7 +4.6 [-10.1;-7.3] 0.94 0.01
Dmean -1.8+1.2 [-2.2;-1.5] 0.98 0.01
D95% -6.8 *45 [-8.2;-5.5] 0.93 0.007
Dmax 03+26 [-0.5; 1.0] 0.97 0.7
Breast Dmin 11.4+17.6 [2.9; 20] 0.97 0.008
Dmean 0.43 +£0.67 [0.1;0.8] 0.99 0.03
D95% 52+94 [0.4;99] 0.99 0.01
Dmax 6.7 +23.1 [-5.3;18.0] 0.70 0.02
Spine Dmin 9.2+13.6 [3.7;22.2] 091 0.03
Dmean -1.7+4.6 [-6.1;2.6] 0.99 1.0
D95% 28+3.6 [-0.5; 6.2] 0.99 0.15
Dmax 1.6+49 [-3.1;6.3] 0.99 0.83
Head & Dmin -09+1.6 [-1.4 ;0.4] 0.99 0.12
neck Dmean 0.66 2.3 [02;1.2] 0.98 0.44
D95% -0.59 £ 0.88 [-0.8;-0.4] 0.99 0.1
Dmax 0.65 +0.57 [0.5;0.8] 0.99 0.004
Brain Dmin -0.12+0.9 [-0.4;0.2] 0.99 1.0
Dmean 0.04+0.13 [0.01;0.1] 0.99 0.67
D95% -0.1£ 0.6 [-0.3;0.1] 0.99 0.87
Dmax 0.11+ 03 [0.1;0.2] 0.99 0.5
Pelvis Dmin -0.02+1.3 [-0.2;0.2] 0.99 0.75
Dmean 0.18 £ 0.62 [0.1;0.3] 0.99 0.5
D95% 0.12+1.0 [-0.1;0.3] 0.99 0.5
Dmax 0.09 £ 0.4 [0.1;0.2] 0.99 0.78
100 100
75 75
s ——AAA <
g 50 —MB R
2 °
© ”
»
25 25
Spinal cord
0 0
0 20 40 60 80 100 0 20 40 80 100
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Figure 1: Cumulative dose volume histograms for lung calculated using the MB method with 1D heterogeneity correction for

plan 1 and AAA for plan 2.
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Tables 4: The dosimetric and statistical results for OARs. The average () presents the dose difference in % and SD presents
the standard deviation.

Cancer sites OARs Dose p+SD 95% CI r-value p-value
Lung Lung (minus the V20 Gy 8.1+40 [4.1;12.1] 0.99 0.03
PTV) V30 Gy 13=+6.1 [-4.6;7.3] 0.97 0.6
Dmean 1.9+ [-2.8;6.7] 0.90 0.4
Spinal cord Dmax 0.8+1.0 [0.1;1.8] 0.98 0.1
Heart V40 Gy 1.4 +£3.2 [-1.6;4.5] 0.99 0.3
Breast Lung V20 Gy 10.7 £10.3 [0.8;20.8] 0.99 0.06
V30 Gy 12.4+12.0 [1.1;23.6] 0.99 0.03
Dmean 14.4+£8.0 [6.5;22.3] 0.99 0.03
Heart Dmax 19.2+13.3 [6.9;31.5] 0.99 0.03
Spine Spinal cord Dmax 0.8 *0.6 [0.2;1.3] 0.99 0.03
Kidney Dmean 20 £1.0 [0.1;4.0] 0.99 0.8
Head & neck Spinal cord Dmax 3115 [1.7 ;4.5] 0.99 0.03
Parotid Dmean 43+44 [0.8; 6.0] 0.99 0.1
Larynx Dmean 9.1+15 [0.1;4.7] 0.99 0.1
Oral cavity Dmean -097+7.6 [-8.4; 6.6] 0.99 0.1
Brain Trunk Dmax 112+1.1 [0.3;2.6] 0.64 0.2
Cochlea Dmax 3.7+27 [1.8;5.6] 0.98 0.01
Optic nerves Dmax 24+49 [1.8;5.8] 0.99 0.3
Optic chiasm Dmax 1.1 29 [-2.2; 4.3] 0.98 0.8
Pelvis Bladder V60 Gy 3.3+3.7 [0.0;6.9] 0.99 0.1
Dmax 0.5+0.5 [-0.3; 2.6] 0.99 0.1
Rectum V60 Gy 1.5+2 [0.7;3.7] 0.99 0.1
Dmax -0.2£0.3 [-0.5;0.2] 0.99 0.1
Femoral head V50 Gy 15.1+£38.3 [-7.9;38.1] 0.92 0.2
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Figure 2: Boxplot for S-index obtained from MB method in plan 1 and AAA in plan 2 indicating the minimum (min), median
and maximum (max) values, as well as the 25th (Q1) and 75th (Q3) percentiles.
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Figure 3: Boxplot for quality indices obtained from MB method in plan 1 and AAA in plan 2 indicating the minimum (min),
median and maximum (max) values, as well as the 25th (Q1) and 75th (Q3) percentiles.

4. Discussion

Many authors have evaluated the recent density
correction methods and algorithms in terms of their
abilities to  accurately represent the dose
distribution.1>-18 They observed a large impact on the
dose calculation particularly for heterogeneous media.
They suggested that these corrections and algorithms
should be used for more accurate calculation during
clinical radiotherapy planning. Recently, numerous
studies, recommended using AAA or Acuros XB for
calculating the dose in heterogeneous media.” 8 20,21, 22

In our study, we tackled the problem of changing the
calculation algorithms from MB with 1D heterogeneity
correction to AAA so as to offer the clinician treatment
plans that are much nearer to reality than the plans
generated using the MB method. We raised the question
as to whether the clinician should adapt the dose
prescription when moving from MB to AAA. We present
a detailed analysis of the differences between DVH and
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quality indices for six typical treatment cases calculated
using the two different algorithms. The MB method is
not very accurate as a correction method; it only takes
into account the density in 1D and it does not allow for
changes in lateral electron transport. Conversely, AAA
models accommodate lateral electron transport. We
observed that tissues with lower densities, such as lung,
are subject to a significant difference between MB and
AAA. The chest exhibits a highly heterogeneous anatomy
with bone, lung and soft tissues. Usually treatment
consists of both lateral and oblique beams, which
traverse low-density lung tissue. Since AAA is more
accurate in correcting for heterogeneity it showed a
dosimetric impact on the PTVs and OARs. Thus, there
are significant differences in the dose for PTVs and OARs
for lung, breast and spine. In clinical practice, the dose
distribution is not uniform over the PTVs due to
heterogeneous tissue densities. Our comparison of
S-indexes showed that MB tends to give a better PTV
coverage with homogenous dose distribution.
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Nevertheless, the AAA method is closer to the reality
because it takes into account the lateral electron
transport, as mentioned above. The observed difference
in dose distribution is due to the effect of lateral
electrons and it is expected to be larger for tissue with
lower density. This explains why AAA under estimated
the dose for some areas of PTVs and hot spots in normal
tissue outside the PTVs. However, the dose difference
varied from one cancer site to another and from patient
to patient. This means that the geometric configuration,
or the dose weight of beams, must be optimized to fulfil
the dose constraints for OARs.

Whatever the differences are, Chaikh et al. showed that
these differences could be quantified and presented by
means of a color-code using the gamma index.23-24 The
gamma tool shows a visual representation of the
difference in dose distribution to the patient. They
reported that the only realistic dose distribution is that
evaluated by the clinical results obtained to the benefit
of the patient. Currently, in reality the representation of
the dose distribution calculated by an algorithm has
clinical value when it is linked to the clinician’s
experience. These results should be discussed among
clinicians and medical physicists to decide whether a
modification of the current prescription procedure and
plan acceptability criteria should be considered.

5. Conclusion

This study should alert physicians to treatment
modifications associated with a change from the
Modified Batho's method to AAA. The heterogeneity
correction algorithms are not equal from the point of
view of their ability to calculate the dose, especially for
lung, breast and spine cases. This is due to the fact that
AAA approximates lateral electron transport, which
shows a significant impact on dose distribution. The
physicist should be careful when changing from older
algorithms to newer algorithms, in order to maximally
protect the healthy tissues and to continue to achieve an
optimal clinical outcome.
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