The use of gold markers and electronic portal imaging for radiotherapy verification in prostate cancer patients: Sweden Ghana Medical Centre experience

George Felix Acquah

Abstract


The success of radiotherapy cancer treatment delivery depends on the accuracy of patient setup for each fraction. A significant problem arises from reproducing the same patient position and prostate location during treatment planning for every fraction of the treatment process. To analyze the daily movements of the prostate, gold markers are implanted in the prostate and portal images taken and manually matched with reference images to locate the prostate. Geometrical and fiducial markers are annotated onto a highly quality generated digitally reconstructed radiographs, that are compared with portal images acquired right before treatment dose delivery. A 0 and 270 degree treatment fields are used to calculate prostate shifts for all prostate cancer patients undergoing treatment at the Sweden Ghana Medical Centre, using an iViewGT portal imaging device. After aligning of the marker positions onto the reference images, the set-up deviations corrections are displayed and an on-line correction procedure applied. The measured migrations of the prostate markers are below the threshold of 3 mm for the main plans and 2 mm for the boost plans. With daily electronic portal imaging combined with gold markers, provides an objective method for verifying and correcting the position of the prostate immediately prior to radiation delivery.

--------------------------------------------

Cite this article as: Acquah GF. The use of gold markers and electronic portal imaging for radiotherapy verification in prostate cancer patients: Sweden Ghana Medical Centre experience. Int J Cancer Ther Oncol 2014; 2(1):020112.

DOI: http://dx.doi.org/10.14319/ijcto.0201.12


Keywords


Prostate Cancer; Gold Markers; Treatment Verification; EPID; DRRs

Full Text:

PDF HTML

References


Herman MG, Balter JM, Jaffray DA, et al. Clinical use of electronic portal imaging: report of AAPM Radiation Therapy Committee Task Group 58. Med Phys 2001; 28:713-34.

McKenzie AL, van Herk M, Mijnheer B. The width of margins in radiotherapy treatment plans. Phys Med Biol 2000; 45:3331- 42.

Hanley J, Lumley MA, Mageras GS, et al. Measurement of patient positioning errors in three-dimensional conformal radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 1997; 37: 435-44.

Mageras GS. Management of target localization uncertainties in external-beam therapy. Semin Radiat Oncol 2005; 15:133-35.

International Commission on Radiation Units and Measurements (ICRU). Prescribing, Recording and reporting photon beam therapy, ICRU report 50). Bethesda, Maryland: ICRU Publications; 1993: 1-71.

International Commission on Radiation Units and Measurements (ICRU). Prescribing, Recording and reporting photon beam therapy (supplement to ICRU report 50), ICRU Report 62. Bethesda, Maryland: ICRU Publications; 1999: 1-52.

Balter JM, Sandler HM, Lam K, Bree RL, Lichter AS, ten Haken RK. Measurement of prostate movement over the course of routine radiotherapy using implanted markers. Int J Radiat Oncol Biol Phys 1995; 31:113-8.

Bel A, Vos PH, Rodrigus PT, Creutzberg CL, et al. High-precision prostate cancer irradiation by clinical application of an offline patient setup verification procedure, using portal imaging. Int J Radiat Oncol Biol Phys 1996; 35:321-32.

Dawson LA, Mah K, Franssen E, et al. Target position variability throughout prostate radiotherapy. Int J Radiat Oncol Biol Phys 1998; 42:1155-61.

Van Lin EN, Nijenhuis E, Huizenga H, et al. Effectiveness of couch height-based patient set-up and an off-line correction protocol in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 2001; 50:569-77.

Vigneault E, Pouliot J, Laverdiere J, et al. Electronic portal imaging device detection of radioopaque markers for the evaluation of prostate position during megavoltage irradiation: a clinical study. Int J Radiat Oncol Biol Phys 1997; 37:205-12.

Hashimoto S, Shirato H, Nishioka T, et al. Remote verification in radiotherapy using digitally reconstructed radiography (DRR) and portal images: a pilot study. Int J Radiat Oncol Biol Phys 2001; 50: 579-85.

Hurkmans CW, Remeijer P, Lebesque JV, et al. Set-up verification using portal imaging; review of current clinical practice. Radiother Oncol 2001; 58:105-20.

Murphy MJ, Balter J, Balter S, et al. The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Med Phys 2007; 34:4041-60.

Schallenkamp JM, Herman MG, Kruse JJ, Pisansky TM. Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and electronic portal imaging. Int J Radiat Oncol Biol Phys 2005; 63: 800-11.

Nederveen AJ, van der Heide UA, Dehnad H, et al. Measurements and clinical consequences of prostate motion during a radiotherapy fraction. Int J Radiat Oncol Biol Phys 2002; 53:206-14.

Poggi MM, Gant DA, Sewchand W, et al. Marker seed migration in prostate localization. Int J Radiat Oncol Biol Phys 2003; 56:1248-51.




DOI: http://dx.doi.org/10.14319/ijcto.0201.12

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

------------------------------------------------------------

International Journal of Cancer Therapy and Oncology (ISSN 2330-4049)

© International Journal of Cancer Therapy and Oncology (IJCTO)

To make sure that you can receive messages from us, please add the 'ijcto.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

------------------------------------------------------------

Number of visits since October, 2013
AmazingCounters.com