Clinical dosimetric impact of Acuros XB and analytical anisotropic algorithm (AAA) on real lung cancer treatment plans : review

Suresh Rana

Abstract


Photon dose calculation algorithms in treatment planning system could affect the accuracy of dose delivery when tissue heterogeneity is involved along the beam path. Treatment planning for lung cancer is challenging, especially in the case of treatment plan involving small fields. The combination of low-density (air) medium and small fields cause charge particle disequilibrium nears the air/tissue interface. Beam modeling within the dose calculation algorithms must also employ an accurate method of accounting tissue heterogeneity corrections in order to avoid dose overestimation or underestimation. Analytical anisotropic algorithm (AAA) is one of the widely tested and validated dose calculation algorithms in external beam photon radiation therapy. Recently, Acuros XB (AXB) was made available for photon dose calculations, and several studies have demonstrated better dose prediction accuracy of the AXB over AAA. This article reviews the results from the treatment planning studies, which have investigated the clinical dosimetric impact of the AXB and AAA on real lung cancer treatment plans.

--------------------------------------

Cite this article as: Rana S. Clinical dosimetric impact of Acuros XB and analytical anisotropic algorithm (AAA) on real lung cancer treatment plans: review. Int J Cancer Ther Oncol 2014; 2(1):02019.


DOI: http://dx.doi.org/10.14319/ijcto.0201.9


Keywords


Acuros XB; Analytical Anisotropic Algorithm; Lung cancer; Tissue heterogeneity correction; Treatment planning

Full Text:

PDF HTML

References


Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008; 35:310–317.

Papanikolaou N, Battista J, Mackie T, Kappas C, Boyer A. Tissue inhomogeneity corrections for megavoltage photon beams. AAPM Report No 85; Task Group No. 65, 2004.

Gray A, Oliver LD, Johnston PN. The accuracy of the pencil beam convolution and anisotropic analytical algorithms in predicting the dose effects due to attenuation from immobilization devices and large air gaps. Med Phys 2009; 36:3181–3191.

Kan MW, Cheung JY, Leung LH, Lau BM, Yu PK. The accuracy of dose calculations by anisotropic analytical algorithms for stereotactic radiotherapy in nasopharyngeal carcinoma. Phys Med Biol 2011; 56:397–413.

Martens C, Reynaert N, de Wagter C, et al. Underdosage of the upper-airway mucosa for small fields as used in intensity-modulated radiation therapy: a comparison between radiochromic film measurements, Monte Carlo simulations, and collapsed cone convolution calculations. Med Phys 2002; 29:1528–1535.

Oyewale S. Dose prediction accuracy of collapsed cone convolution superposition algorithm in a multi-layer inhomogenous phantom. Int J Cancer Ther Oncol 2013; 1:01016.

Fogliata A, Vanetti E, Albers D, et al. On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol 2007; 52:1363–1385.

Rana S, Pokharel S. Verification of dose calculation algorithms in a multi-layer heterogeneous phantom using films. Gulf J Oncolog 2013; 1:63-69.

Robinson D. Inhomogeneity correction and the analytic anisotropic algorithm. J Appl Clin Med Phys 2008; 9:2786.

Rana SB. Dose prediction accuracy of anisotropic analytical algorithm and pencil beam convolution algorithm beyond high density heterogeneity interface. South Asian J Cancer 2013; 2:26-30.

Van Esch A, Tillikainen L, Pyykkonen J, Tenhunen M, Helminen H, Siljamaki S, Alakuijala J, Paiusco M, Lori M, Huyskens DP. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys 2006; 33:4130-4148.

Gagne IM, Zavgorodni S. Evaluation of the analytical anisotropic algorithm in an extreme water-lung interface phantom using Monte Carlo dose calculations. J Appl Clin Med Phys 2006; 8:33-46.

Sievinen J, Ulmer W, Kaissl W. AAA photon dose calculation model in Eclipse. Palo Alto (CA): Varian Medical Systems; 2005.

Ulmer W, Pyyry J, Kaissl W. A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations. Phys Med Biol 2005; 50:1767–1790.

Tillikainen L, Helminen H, Torsti T, Siljamäki S, Alakuijala J, Pyyry J, Ulmer W. A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media. Phys Med Biol 2008; 53:3821-3839.

Vassiliev ON, Wareing TA, McGhee J, Failla G, Salehpour MR, Mourtada F. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol 2010; 55:581–598.

Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Med Phys 2011; 38:2208-2221.

Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys 2011; 38(5):2651-2664.

Kroon PS, Hol S, Essers M. Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans. Radiat Oncol 2013; 8:149.

Kathirvel M, Subramanian S, Clivio A, Arun G, Fogliata A, Nicolini G, Subramani V, Thirumalai Swamy S, Vanetti E, Cozzi L. Critical appraisal of the accuracy of Acuros-XB and Anisotropic Analytical Algorithm compared to measurement and calculations with the compass system in the delivery of RapidArc clinical plans. Radiat Oncol 2013; 8:140.

Rana S, Rogers K. Dosimetric evaluation of Acuros XB dose calculation algorithm with measurements in predicting doses beyond different air gap thickness for smaller and larger field sizes. J Med Phys 2013; 38:9-14.

Rana S, Rogers K, Lee T, Reed D, Biggs C. Verification and dosimetric impact of Acuros XB algorithm for stereotactic body radiation therapy (SBRT) and RapidArc planning for non-small-cell lung cancer (NSCLC) patients. Int Jour of Med Phys Clin Eng Radiat Onc 2013; 2:6-14.

Stathakis S, Esquivel C, Quino L, Myers P, Calvo O, Mavroidis P, Gutiérrez A and Papanikolaou N. Accuracy of the small field dosimetry using the Acuros XB dose calculation algorithm within and beyond heterogeneous media for 6 MV photon beams. Int Jour of Med Phys Clin Eng Radiat Onc 2012; 1:78-87.

Dutreix J, Dutreix A, Tubiana M. Electronic equilibrium and transition stages. Phys Med Biol 1965; 10:177-190.

Das IJ, Ding GX, Ahnesjö A. Small fields: nonequilibrium radiation dosimetry. Med Phys 2008; 35:206-215.

Liu HW, Nugent Z, Clayton R, Dunscombe P, Lau H, Khan R. Clinical impact of using the deterministic patient dose calculation algorithm Acuros XB for lung stereotactic body radiation therapy. Acta Oncol 2013. [Epub ahead of print]

Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int J Radiat Oncol Biol Phys 2012; 83:1587-1595.

Khan RF, Villarreal-Barajas E, Lau H, Liu HW. Effect of Acuros XB algorithm on monitor units for stereotactic body radiotherapy planning of lung cancer. Med Dosim 2013. [Epub ahead of print]

Rana S, Rogers K, Pokharel S, Cheng C. Evaluation of Acuros XB algorithm based on RTOG 0813 dosimetric criteria for SBRT lung treatment with RapidArc. J Appl Clin Med Phys 2014; 15:4474.

Lu L. Dose calculation algorithms in external beam photon radiation therapy. Int J Cancer Ther Oncol 2013; 1:01025.

Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Dosimetric evaluation of Acuros XB advanced dose calculation algorithm in heterogeneous media. Radiat Oncol 2011; 6:82.

Han T, Followill D, Mikell J, Repchak R, Molineu A, Howell R, Salehpour M, Mourtada F. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer. Med Phys 2013; 40:051710.

Han T, Mourtada F, Kisling K, Mikell J, Followill D, Howell R. Experimental validation of deterministic Acuros XB algorithm for IMRT and VMAT dose calculations with the Radiological Physics Center's head and neck phantom. Med Phys 2012; 39:2193-2202.

Kan MW, Leung LH, So RW, Yu PK. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma. Med Phys 2013; 40:031714.

Fogliata A, Scorsetti M, Navarria P, Catalano M, Clivio A, Cozzi L, Lobefalo F, Nicolini G, Palumbo V, Pellegrini C, Reggiori G, Roggio A, Vanetti E, Alongi F, Pentimalli S, Mancosu P. Dosimetric comparison between VMAT with different dose calculation algorithms and protons for soft-tissue sarcoma radiotherapy. Acta Oncol 2013; 52:545-552.

Dogan N, Siebers JV, Keall PJ. Clinical comparison of head and neck and prostate IMRT plans using absorbed dose to medium and absorbed dose to water. Phys Med Biol 2006; 51:4967-4980.

Keall P, Liu H. Dm rather than Dw should be used in Monte Carlo treatment planning. Med Phys 2002; 29:922–924.




DOI: http://dx.doi.org/10.14319/ijcto.0201.9

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

------------------------------------------------------------

International Journal of Cancer Therapy and Oncology (ISSN 2330-4049)

© International Journal of Cancer Therapy and Oncology (IJCTO)

To make sure that you can receive messages from us, please add the 'ijcto.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

------------------------------------------------------------

Number of visits since October, 2013
AmazingCounters.com